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~ E x p e r i m e n m l  and mmlyt~d studies are presnted directed to the pred~m of Sow pattm~ 
transitions in a vertical rod bundle array. The test section used consists of a 24 rod matrix ms • squa:e pitch 
in • cylindrical shell. Antlygcal models are given based on physical in--ration of tire mtmitiou 
mechanisms. Dam on rise velocities of small and Itrge bubbles in rod bundles are also presented. 

INTRODUCTION 
This study of flow pattern transitions in rod bundles was motivated by the need for predicting 
such transitions in a pressurized water nuclear reactor during a loss of coolant accident 
(LOCA). During Such an accident two phase flow takes place in the space between the rods, 
and reliable calculation of the flow and heat transfer rates depends on being able to predict the 
flow pattern. Flow pattern transition information is also useful for analysis and design of two 
phase flow on the shell side of heat exchanger tube bundles. 

Experiments involving the transitions in rod bundles are few in number and no theory has 
appeared in the literature. Bergles a al. (1968) studied the two phase upflow of steam-water at a 
pressure of 6.9 x los NIm 2 in a four rod bundle arranged in a square array. Similar studies were 
undertaken by Williams & Peterson (1978) at 2.76 × l0 s, 8.27 × los and 13.79 × 106 N/m z in a four 
rod bundle arranged in a linear array. In both studies bubble, froth, slug and annular flows were 
observed. Williams & Petersons data (1978) show that some of the flow patterns may be absent 

at certain pressures and flow rates. 
To understand the flow pattern transition in a rod bundle, a test section with 24 rods, 

arranged on a square pitch in a cylindrical shell was constructed and the upflow of air-water 
was studied. This paper presents the results of these experiments and suggests a mechanistic 
basis for the prediction of flow pattern transition following the modelling ideas proposed by 
Taitel & Barnea (1980). 

EXPERIMENTAL 

The flow loop is shown schematically in figure I. Figure 2 gives a dimensional sketch of the 
test section assembly. Water is supplied to the test section through the conical section shown at 
the bottom. 

A variety of methods were used to generate bubbles for the measurement of rise velocity. 
For large Taylor bubbles an inverted Plexislas hemisphere as shown above the water entry in 
fisure 2 was loaded with air from a calibrated syringe or from the air supply tube and manually 
inverted to create the bubble. Small Taylor bubbles which occupied the space between four 
rods were generated by removing the cap and pulsin8 the air flow using a timed solenoid on the 
air supply tube. For continuous gas flow the gas entry section was replaced with one shown in 
cross section in figure 3 equipped with four 0.64 cm and four 1.27 cm diameter ports located 
around the perimeter of the shroud. This entry section was used for all Ilow pattern transition 
studies. Small bubbles were generated using the entry by inserting a plate having one centered 
orifice just below the rod bundle. Water and gas flowing up the rod bundle overflowed at the top 
into a plastic drum which served as a separator. The water was returned to the supply tank 
while air was exhausted into the atmosphere. 

A cross sectional view of the rod bundle appears in fisure 4. The rods were 1.27 cm in 
diameter and are arranged in a square pitch of 1.75 cm. The cylindrical shell had an i.d. of 
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Figure I. Flow loop. 
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Figure 2. Test section assembly. 

8.89 cm with 0.64 cm wall thickness. Both rods and shell were made of transparent Plexiglas to 
permit visual observation of the flow patterns. Partial rods at the wall were used to minimize 
bypassing and to create a true section of a larger bundle. Vibration of the rods was eliminated 
by using Plexiglas pins between rods at random locations. The entire rod system was assembled 

on steel cross rods located at the top and bottom. At the top these steel rods extended beyond 
the rod matrix and were used to support the rod bundle by resting these rods in a cut-out shown 
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Figure 4. Cross section of rod bundle. 

at the top of the assembly in figure 2. The partial rods shown in figure 4 were screwed to the 
cylindrical shroud to minimiTe bypassing along the wall. Pressure taps were imtalled 122 cm 
apart on the test section. Details of the equipment along with photographs are given by 
Venkateswararao (1981). 

Velocities of large bubbles 00-80 cm 3) were measured using ~ speed photography and a 
timing clock in the background having a resolution of 0.01 second. Velocity and size of small 
bubbles were measured using the laser/Ronchi grating technique developed by Semiat & Dukler 
(1981). Flow patterns were observed visually. 

EXPERIMENTAL RESULTS 

Based on visual observations, the following flow patterns were observed over the range of 
flow rates poss~ie with the ak and water supply system. 

Bubble .flow. Bubbles whose diameters are less than the characteristic spacing between the 
rods, flow upward, distn"outed in the liquid phase. 

Slug ~ow. Large bubbles move upward, followed by a liquid slug carrying small distrt~outed 
bubbles. The liquid around the large bubble flows down as a film along the rods. Two types of 
large bubbles are observed as shown in figure 5: (a) Large Taylor type bubbles whose caps are 
penetrated by a number of rods. In some cases these bubbles are large enouCh to occupy almost 
the entire cross sectional area of the cylindrical shell. These are designated as shroud Taylor 
bubbles. In general, shroud Taylor bubbles are observed only when there is a sudden increase in 
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Figure 5. Two types of Taylor bubbles. 

the gas flow rate. (b) Nearly spherically capped bubbles ocoupying the space in a four rod cell 
whose caps are not penetrated by the rods. Such bubbles are designated as cell Taylor bubbles. 

Churn flow. This flow patttern is characterized by irregular alternating motion of liquid and 
gas. In slug flow the propagation velocities of the large bubbles and the liquid slugs are always 
uniformly upward while that of the film alongside the bubble is uniformly downward. Dhring 
churn flow the direction of the liquid flow changes in an erratic and irregular way from upflow 
to downflow and vice versa. Liquid flows downward not only as a film but also as units of liquid 
which occupy much of the cross sectional area, are collected at lower positions and forced to 
rise again by liquid and gas from below. 

Annular flow. Liquid flows as a wavy film along the rods and the shroud while part of the 
liquid is carried by the gas as dispersed droplets. 

Flow patterns as observed over the operable flow rate range are shown in figure 6. The solid 
curves indicate the location of the experimentally observed variations. Measured pressure 
gradients appear in figure 7. 

B U B B L E  RISE V E L O C I T I E S  

Small bubbles. Bubble size and rise velocities were measured for (a) separated non- 
interacting bubbles in the absence of liquid feed, (b) separated bubbles in a moving liquid (30 
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and 50 cmlsec liquid velocities) and (c) low density bubbly flow with superficial liquid velocities 
of 0, 10, 30 and 50 cmlsec). For all measurements the data represent averages of over more than 
500 bubbles. 

The measured relationship between size and rise velocities of single non-interacting bubbles 
in stagnant liquid are shown in figure 8. The dotted line represents the rise velocities reported in 
the literature for an infinite medium and it is clear that the trends are different. 

The effect of liquid flow on the bubble velocity has been commonly reported as 

u = CLULS+ Uo [1] 

where U = bubble velocity, CL = flow correction factor, UL s = superficial liquid velocity and U0 
is the rise velocity in stagnant liquid. In the present experimental study Ct. was calculated using 
the measured values of the rise velocity, U and U0 from figure 8. These are shown in figure 9. 

Typical size and velocity distributions for low density bubbly flow in stagnant liquid are 
shown in figures 10 and 11. In the presence of liquid flow, the rise velocity of bubbles in a low 
density swarm fol low[l ]  with a value of CL = 1.0 as shown in figure 12. 

Cell Taylor Bubbles. These bubbles occupy a large part of the free space in a four rod cell 
(see figure 5). The tail or skirt of these bubbles frequently break into smaller dispersed bubbles 
as it rises. Software was developed to discriminate on bubble size and the velocity data 
associated with these small satellite bubbles was rejected. Results of the experiment show that 
the average rise velocity of these cell Taylor bubbles is remarkably constant at 24-  1 cm/s. 

Shroud Taylor bubbles. Shroud Taylor bubbles (10-80 cm 3) were generated in stagnant liquid 
by the inverted cup technique. As the Taylor bubble rises, liquid falls down the rods and the 
wall of the shroud. Velocities of these bubbles, measured by the photographic technique 
described earlier, are shown in figure 13 as curves 3 and 4 representing two sets of data. The 
spread between these two curves is a measure ef the scatter due to the avera~in" ~ of a relatively 
small number of bubbles. The constant curve marked 1 is the prediction of Dumitrescu/Tayior 
theory, while curve 2 shows the prediction of the theory of Grace & Heurrison (1967) developed 
for Taylor bubbles which are penetrated by a single rod. 

THEORETICAL MODELS FOR FLOW PATTERN TRANSITIONS 

In this section models are developed for each of the transitions using an approsch similar to 
that ofTaitel & Barnea (1980) for flow in empty vertical tubes. These models are based on specula- 
tion as to the physical mechanism underlying the transition. 
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Figure 8, Rise velocity of si,'~¢ bubbles in a 4 rod cell: stationary liquid. 
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(i) Bubble to slugflow: When gas is introduced at low flow rates, the gas phase is distributed 
into discrete bubbles. These bubbles move upward in a zig-zag path with considerable 
randomness, occasionally colliding, coalescing and forming large bubbles. As the gas rate is 
increased the bubble size remains about the same, but the bubble density increases and a point is 

reached where the dispersed bubbles become closely packed so that many collisions occur and 
the rate of agglomeration increases sharply. This results in a transition to slug flow. If we 
consider the bubbles to have spherical shape and arranged in a cubic lattice, the void fraction of 
the gas can be, at most, 0.52. However, as a result of their deformation and random path the rate 

of collision and coalescence increases sharply at void fractions well below this lattice spacing at 
which they touch. Therefore, the closest distance between the bubbles before transition must 
be the one which permits some freedom of motion for each individual bubble. If the spacing 
between bubbles at which coalescence begins to increase sharply is assumed to be ap- 
proximately half their radius, this corresponds to a void fraction of 0.25. Thus, a = 0.25 is the 
transition void fraction when all the bubbles are uniformly distributed in the cross-section. 

Observation of the bubbles in a rod bundle shows that few bubbles move in the space 
between any two rods but migrate to the open area which exists between an array of 4 rods. 

Thus, in the sketch in figure 14, dispersed bubbles are seldom observed in the free space along 
the line A - B  but instead are concentrated in the space designated by the circle C. Bubbles 
which originate in the narrow gap migrate to the open region as a result of the Bernoulli force 
that exists due to the velocity gradient in the cell. Therefore, it is suggested that transition to slug 
flow takes place when the void fraction in the circle C reaches 0.25. This local void fraction al 

can be related to the overall void fraction in all of the free area as 

a = [(X/{2}(pld)- I)] 2 
4/It(p/d) 2 -  1 at [2] 

where p is the pitch and d is the rod diameter. 
In bubbly flow liquid, gas and bubble velocities are related by 

Uc = uL + uo. [31 

Expressing Ua and UL in terms of superficial flow rates 

s Uo = UL s 
+ Uo [41 

a (1 - ~ )  
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Figure 14. A four rod cell. 
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For the configuration studied (p/d = 1.38) and a: = 0.25 the value of a calculated from[2] is 
0.16. Chosin8 a constant value of Uo = 24cm/sec it is possible to calculate the transition 
boundary and this is shown in figure 15 as the dotted line A. The solid line marked A shows the 
experimentally observed bobble-slug transition as taken from figure 6. 

(ii) S/us or babbly to dispersed babble pattern. At him4~ liquid flow rates, forces due to 
turbulence cause the gas phase in either slug or bubbly flow to break into small bubbles which 
are dispersed in the continuous liquid phase. In contrast with the larger bubbles which exist at 
lower liquid velocities, these bubbles do not display lateral oscillations, collisions or coales- 
cence. Instead they rise linearly and thus remain dispersed. Furthermore, the rise velocity is 
small compared to the local fluid velocity. This pattern is observed in tubes and has been 
modelled by Taitel et oL (1980). They relate the maximum stable bubble size to the flow 
conditions and fluid properties through a Weber number criterion. This expression is equated to 
the relationship which gives the bubble size at which oscillations no longer take place. With 
these concepts they showed that the equation for the transition is 

. .,s+"°s='.°l I. ,. [6] 

The same condition can be assumed to exist for rod bundles with D taken as the hydraulic 
diameter of the 4 rod cell. Equation [6] is shown as dotted curve B-B  in fiffare 15 for the 
experimental system and flow properties used in these experiments. Bubbly flow can no longer 
exist at gas rates so high that the bubbles are packed close enough to be in contact. This will 
happen when a = 0.52 (square lattice). Thus dispersed bubbly flow, the region above B-B, must 
terminate at the right at the condition where ~ =0.52. From [5] with U0=0, the 
relationship between and the superficial velocities are 

~ S  
" =  Uc ~ + U:" 

Sel~ine a = 0.52 this relationship maps as curve C-C in figure 15. Thus, the region to the left of 
C-C and above B-B is the predicted zone for dispersed bubble flow. It can be seen from filPm'e 
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6 that experiments could not be carried out to high enough liquid rates (due to limitations in 
pumping capacity) to test this part of the theory in the rod bundle system. 

(iii) Slug to churn flow. As the gas rate is increased from slug flow, a transition to churn flow 
pattern takes place. In empty vertical tubes where the Taylor bubbles occupy almost the entire 
cross sectional area of the pipe, this transition is attributed to entry region behavior (Taitel et 
al. 1980) where slow moving Taylor bubbles are overtaken by faster ones. However, for a rod 
bundle the transition takes place from "cell type" slug flow to churn flow and the mechanism is 
quite different due to the absence of the confining walls around each Taylor bubble. 

As the gas rate is increased during slug flow, both the number and size of cell Taylor bubbles 
of the type shown in figure 5 increase. Their size increases to that instead of occupying the 
center region of a cell (as shown in the cell at the lower left of figure 5b), they grow to cover 
almost all of the free space in the cell (see the bubble shown at the upper right of figure 5b). At 
the same time the number of cells occupied by Taylor bubbles increases and eventually the 
concentration of occupied cells is great enough to cause coalescence. When this happens the 
liquid being supported by the bubbles suddenly falls downward in a lump, is mixed with the 
liquid below and starts its ascent again. This behavior of random falling of lumps of liquid is the 
definition of the churn flow pattern. Thus, in a rod bundle the transition to churn flow is a 
coalescence phenomena, and therefore this can be expected to take place at the lowest void 
fraction at which the Taylor bubble density results in contact between bubbles in adjacent cells. 
If one examines the location of bubble pairs possible in the rod bundle considering an array of 
cells in the horizontal plane and a series of bubbles in the vertical direction, the minimum voids 
at which contact can be made is given by the configuration shown in figure 16. The average 
voids corresponding to this configuration is given by 

~-(p + d) [71 
ar  = 6 cos O(2p + d) 

when 

0 = arc sin p - d 
p+d" 

In these experiments with p = 1.75 cm and d = 1.27 cm ar  at which transition to churn flow 
should first be observed is 0.335. Now it is possible to use equation [5] with Uo being the rise 
velocity of the cell type Taylor bubbles to calculate the relationship between UGs and ULs for 
this transition. The result appears in figure 15 as a dotted curve marked D is shown to be in 
reasonable agreement with this experimentally observed transition shown as solid curve D. Uo 
in equation [5] was designated as 0.24 m/s, the measured value for cell type Taylor bubbles. 

(iv) Churn to annular transition. At high gas rates th flow pattern in the rod bundle becomes 
one of annular film flow. The liquid flows upward along all rod surfaces as thin annular films 
with gas flowing in the rest of the free area. The liquid interface is highly wavy and the gas 
carries entrained liquid drops torn from the liquid. For flow in a pipe, Taitel et al. (1980) 
suggested that the mechanism for transition was related to the minimum gas velocity necessary 
to transport the largest drop in the upward direction. At gas velocities less than this value liquid 
begins to fall back, accumulate and bridge the pipe only to be thrust upward again, and thus the 
alternating motion characteristic of churn flow is observed. This mechanism applies when the 
minimum velocity necessary to lift the film is less than the velocity required to lift the largest 
drop. This can be expected to be valid for large film thicknesses where it has been observed 
that the largest drops can be of the order of 5 mm. 

This minimum gas velocity was determined from the balance between gravity and drag 
forces acting on the largest stable drop. The drop size is calculated using a critical Weber 
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number criteria while the drag coefficient is known to be constant for these large drops. 
Neglecting the thickness of the liquid film, the result of this analysis is that the churn to annular 
transition takes place at a superficial velocity which depends only on the fluid properties: 

u~S = 3.1 [¢g(P~: ~ ) ]  'j' . [8] 

For the air-water system used in these experiments the equation is plotted as line E-I in figure 
15 and is shown to be in excellent agreement with the data at higher liquid flow rates. 

At low liquid rates where the film is very thin the mechanism can be expected to change. 
Then the liquid film becomes very thin and waves which are the source of the drops are 
suppressed. Thus, liquid entrainment can no longer be controlling. At this condition of low liquid 
rate another mechanism comes tnto play. Fernandes (1981) has shown from experiment that 
across the churn flow region the simple holdup model for voids in slug flow continues to be 
valid. 

UoS [9] 
Otch -~ UG " 

As the gas rate is increased the pattern changes to annular and the void is given by 

= p: - ~4(d + 28) e 
a,  pe _ ~4  d e [lo] 

when p is the pitch, d is the tube diameter and 8 is the film thickness. 
We speculate that as the gas rate is increased, the condition at which ach first equals ao is 

the condition at which transition takes place. An equation for ao is developed as follows. 
Consider a 4 rod cell as defined by the square in figure 14 which has each side of length equal to 
the ptich, p. A force balance on the gas contained in the cell is: 

"~+ pos + Ae---~c ~, =o [11] 

where dpldz is the pressure gradient in te flow direction, ~ is the shear acting at .the gas liquid 
interface, Pc is the wetted perimeter of the film and Ao is the flow area for the gas. The 
following relationships are obtained from geometrical considerations alone. 

where 

PG = ~(d + 28) [12a] 

Ao =p2 ~r(d+2B) 2 
4 [12b] 

ao = pe _ ~4(d + 28) 2 
p 2 -  ~4  d 2 [12c] 

8_ = [1 +4C(1 - a , ) ]  m -  1 
d 2 = g(ao) [12d] 

l ,q 
¢ = ~ L ~ / -  7J" 
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As a first approximation the interracial shear is estimated through a friction factor expression 
suggested by Wallis 0969) 

1 , l 
r, = ~f~oGU~'= ~a fip~U G- [131 

/ /=  0.005 (1 + 300-~). [14] 

Thus, [11] becomes 

~ z  + peg + 0.0025 [1 Ca--'~,d +2g(aa)][1 +300g(a,)]pGUJk [15] 

An overall force balance can be written on both the gas and liquid flowing in the 4 rod cell. 

Here 

dd-•g PL 
+ [aopG + (1 -- Ota)PL]g + (AL + Ac) r .  = O. [161 

e L  = 'lTd 

2 rr d2 AL + Ao = p - -~  

1 2 1 
r .  = ~ f,,pL UL = 2(I - ~ f~°LULS: 

0.0025 [1 + 2g(aa)][1 + 300 g(aa)]poUG ~. 
= Cdota3 

[18] 

Now we search for the intersection of this equation and that given by [9] for the holdup in churn 
flow. The data on large bubble flow discussed earlier suggest that the rise velocity of these cell 
type Taylor bubbles can be expressed by 

UG = 1.15 (uLS + UGS)+ Uo [19] 

where Uo is constant at approximately 0.24 m/s as discussed earlier and the coefficient 1.15 can 
be approximated from figure 9. Equation [9] then becomes 

uGs [20] 
a~h = I. ! 5( U J  + uL s) + 0.24" 

0.0025 
(1 - aa)(PL -- p~)g + Cd(l - ao) ~ pL ULS2 = 

0.0025 
dPdz + [a,pa + (1 - ao)pt]g + Cd(l - aa) 2 PL ULs: = 0 [17] 

Equating the pressure drops from [15] and [17] gives an equation relating ao, UL s and UG s, once 
the physical properties po and pL, the tube diameter, d and pitch, p are specified. 

and fw is estimated according to the suggestion by Wallis (1969), fw = 0.005. Equation [16] then 
becomes 
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Figure 16. Configuration of cell type Taylor bubbles for lowest voids at tmmi~n to churn Sow pattern. 

This is an equation relating a~, UL s and Ua s. To find the condition at transition we find the 
intersection of the two equations where a,~ = a. and this defines the locus of the Uos~ U ~  
pairs at which transition takes place. Settins p, d and the fluid properties to meet the conditions 
of these experiments results in the prediction shown by the dotted curve E-2 in ~plre 15. It is 
seen that the experimental data (solid curve b") is bracketed by tee two models. As expected the 
agreement is best at hish liqtiid rates with the enu'ainment model and at low rates with the void 
fraction matchi~ model. 

As an independent test of the validity of the film model, measurements were made of 
pressure gradient and flow patterns across the transition from churn to annular flow using 
transducers located in the pressure taps shown in f~rure 2. The results are shown as the data 
symbols in figure 17 using dimensionless coordinates 

l dz 
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(PL -- PG)g d z  
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Figure 17. Dimensionless pressure drop st ~e r~.m~.~.~r transition. 
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The dotted curve is the prediction of either [ 15] or [ 17] along the locus of ULS, UGS pairs where ac~ = 
ao. Agreement is seen to be satisfactory. 

The transitions predicted by these models have been compared with the data of Williams & 
Peterson (1978) and of Bergles et "aL (1968). In both cases the system was a boiling steam-water 
system. Williams & Peterson report data at three pressure levels (2.8 × 106, 8.3 × 106 and 
13.8 x 106 N/m 2) in a rod linear array, while Bergles et aL operated at a pressure of 6.9× 
106 N/m 2 with a 4 rod square array. Figures 18-20 compare the Williams & Peterson data 
with the prediction of the models presented in this work. The solid curves display the loca- 
tion and the range of the data in superficial velocity space, while the dotted curves represent the 
transition curves as calculated from the models using the fluid properties and geometry of the 
system. Transition E-2 for this configuration was calculated assuming that a film existed on the 
shroud of equal thickness and interracial shear as on the rods. 

At the lowest pressure (figure 18) Williams and Peterson report only bubbles, slug and 
annular flow since churn flow is not included in their iassitication scheme. Slug flow is described 
as that pattern where the diameter of the bubbles becomes approximately equivalent to a 
subchannei of equivalent diameter, while annular flow is that condition where a continuous 
axial filament of vapor exists. Thus, they do not discriminate between the churn and slug 
patterns. Figure 18 shows reasonably satisfactory agreement for the two transitions observed. 
At the higher pressure conditions (figures 19 and 20) no slug flow was observed. This is exactly 
what would be predicted by the model. The aurhors define froth flow as a condition of highly 
packed bubbles in the absence of coalescence to larger bubbles characteristic of slug flow. We 
consider this simply part of the dispersed bubble pattern and mark no distinction. At 8.3 x 
10 ~ N/m e (figure 19) the annular transition is equally well predicted by the drop lift (E-l) or the 
matching voids (E-2) model. At the highest pressure (figure 20) the drop lift model seems more 
satisfactory. 

A comparison with the data of Bergles et aL (1968) appears in figure 21. The transition from 
bubbly to slug flow is predicted reasonably well. For the transition to annular flow at low liquid 
rates the voids matching model appears to give reasonable agreement while at higher rates the drop 
mechanism is better. For both the experiments of Williams & Peterson as well as Bergles et aL the 
agreement seems especially encouraging when one considers that (a) with only 4 rods the effect of 
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the shroud can be very important, (b) the models are not designed to accommodate the boiling 
process which took place in the Williams and Peterson experiments and (c) the observations were 
admittedly very difficult to make. 

CONCLUSIONS AND RECOMMENDATIONS 

Models developed here for flow pattern transition in a vertical rod bundle show reasonable 
agreement with new data presented for a/r-water in a 24 rod matrix, as well as with steam-water 
data in 4 rod array experiments of others. The correlations and models proposed must still be 
tested with data for other rod spacing and size and for other fluid pairs before they can be used 
with confidence in a general way. 
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